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A study is made of the spreading of damage in the random but deterministic 
Kauffman model on the square lattice with the spreading from one edge of the 
lattice. The critical value of the parameter Pc above which the system becomes 
chaotic is found to be Pc ~ 0.298. The possibility of suppression of the chaotic 
phase by noise is also studied. It is found that for p/> Pc, an extremely large 
noise level g > 0.99 is required, if possible at all. 
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1. I N T R O D U C T I O N  

There has recently been much interest in the random Kauffman cellular 
automata problem. ~1 7) In this model, each of N lattice sites contains a 
Boolean variable or spin a which is either zero or unity and also a set of 
rules unique to that site. These rules, which are generated randomly, deter- 
mine the state of the spin at any given site based on the spin states of 
neighboring sites. Therefore, on a square lattice, which is the situation 
considered here, each site has 2 4 or 16 rules. These rules are generated 
randomly at each site using a set of random numbers uniformly distributed 
in the interval 0 to 1 and comparing with a fixed parameter p ~< 0.5 which 
gives the probability that the spin at each site has value unity. For  our 
square lattice, let a~. = 0, 1 denote the value of the spin at time t at site 
(i, j). Then the rule for the evolution of the Kauffman model is given by 

l 
a ~  +1 f i j ( a i ,  j 1, ' ' ' 1.;;P) (1) (~ i , j+  l ~ f f  i --  l , j~  G i +  

w h e r e f i s  a function that takes the value 0 or 1, and p ~< 0.5 (actually p ~< 1, 
but f is symmetric with respect to the value p = 0 . 5 )  gives the average 
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fraction of times f takes the value 1 among the 16 possible configurations of 
its a arguments. In the original Kauffman model, p is fixed at the value 0.5, 
but the number of input sites varies and these input sites are chosen 
randomly from among any of the N lattice sites. These rules, once 
determined for each site of the lattice, are fixed for all subsequent times. 
The evolution of the system is therefore deterministic. 

In the analysis of the Kauffman model, the concept of "damage" plays 
an essential role. Suppose we iterate according to the same rules two con- 
figurations {ai} and {Pi} on the same square lattice G. Then at time t we 
denote a site i of another square lattice G' as "occupied" (1) if ai(t) and 
pi(t) differ, whereas we call it "empty" (0) if they have the same value. The 
number of sites in G' with value unity denotes the actual damage Mact(t ) at 
time t. On another square lattice G" we record the sites in which a~(t) and 
p~(t) have differed at least once up to time t. That  is, at time t a site in G" 
has value 1 if the same site has value 1 at time t -  1. Otherwise it has value 
1 or 0, depending on whether a~(t) and p~(t) differ or not at time t. The 
number of sites in G" with value unity denotes the total damage Mtot(t ) at 
time t. As explained in Ref. 6, for {o-~} and {p~} differing initially by only 
one site, the actual damage occurs either all on even or all on odd sites on 
G' at all subsequent times. Therefore, occupied sites on G' form clusters 
only if next nearest neighbor sites are considered to belong to the cluster. 
This problem does not occur for the total damage on G", so that we can 
consider clusters formed by nearest neighbor sites. 

In most earlier simulations of the random Kauffman model, (4 6) the 
"seed" used for the initial damage was taken to be a single site. Recently 
Grassberger, (8) in simulating percolation clusters, found that there are 
advantage in taking the seed as a (d-1) -d imens ional  hyperplane in a 
d-dimensional lattice. The main advantage is that one has larger clusters 
from the very beginning, so that fluctuations are small. When starting from 
a single seed, one has very large fluctuations provided the clusters are still 
small. Also, if one starts from a hyperplane, with systems of finite sizes L, 
and obtains quantities such as the threshold pc(L) depending on L, one can 
then use finite-size scaling to extrapolate to the L--* oe limit to obtain 
pc(oo). In this paper we study the random Kauffman model on square 
lattice using cells of size L x L with L up to 200. For  these cells we apply 
periodic boundary conditions in one direction and helical boundary 
conditions in the other. For  studying the spreading of damage, the seed 
used is a line of length L at one edge of the cell. In addition, we introduce 
noise into the model and study its critical behavior. We find that the 
chaotic behavior can be suppressed, if at all, only at extremely large noise 
levels. 
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2. A PERCOLATION A P P R O A C H  

We fix the parameter p at some value p~<0.5 and go one by one 
through the sites of an L •  lattice. For  each site, we go through its 
four neighbors and choose randomly from among their 16 possible 
configurations a fraction p for which we assign the rule a~+l=  1. This is 
done independently for all the sites in the lattice at the beginning of the 
simulation. These rules, peculiar to each site, are stored for as long as the p 
parameter value remains the same. That is, at each value of p we are 
storing a L x L • 16 matrix. Having fixed the dynamical rules, we now 
study two random spin configurations {~r/} and {P i} on a cell of size L • L 
which are initially identical except for one edge of the cell, on which the 
configurations differ for every site on this edge. We have Matt( t= 0 ) =  
Mtot(t=O)=L. We then let the two systems evolve according to the 
dynamical rules just established for the parameter p, up to some maximum 
time T. Using the Hoshen-Kopelman method, (9) we now examine the 
clusters formed on lattice G" for the existence of a spanning cluster in one 
direction across the cell. For  the same value of p other configurations of 
{a} and {p} are generated and allowed to evolve according to the same 
rules up to the same time T and examined for spanning clusters on the 
lattice G". The fractions of configurations of {a} and {p} forming 
spanning clusters on G" are recorded for the value of p. Another value of p 
is then chosen and a corresponding set of rules cr~ + 1 is established for each - -  t j  

of the sites (i, j) and stored. Again the fractions of configurations of {a} 
and {p} with spanning clusters are determined after evolution up to the 
same time T. 

The threshold value pc(L, T) is taken to be the value o fp  for which the 
fraction of spanning clusters is 1/2. It naturally depends on the system size 
and maximum evolution time T. Fortunately, we find that for T greater 
than some value Tm(L) depending on L, the values pc(L, T) become 
independent of T up to our numerical accuracy, so that it is not necessary 
to extrapolate to the infinite-T limit. We find TIn(L)~ 10L. In Table I we 
present the values of pc(L) using T =  10L. Using finite-size scaling, we can 
do a least square fit of the values in Table I with the function 

pc(L) = pc(~ ) + aL-1/~ (2) 

Table I. Values of the Threshold Pc(L) for the Kauffman Model  
w i thout  Noise Obtained w i th  Max imum Evolution Time T--IOL 

L 30 40 50 60 70 90 200 
p c ( L )  0.268 0.276 0.277 0.280 0.282 0.284 0.291 
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to determine the three parameters pc(oo), a, and the correlation length 
exponent v. We find pc(oo)=0.298 and v 1=0.6832. Using this value of 
v -1, in Fig. 1 we plot pc(L) versus L -1Iv. The result fits rather well a 
straight line with intercept at pc(0o)~0.298. This confirms finite-size 
scaling. Our value for Pc(~) is consistent with value 0.29 _+ 0.01 determined 
by Stauffer, (6) although it is not entirely clear if this value for Pc must agree 
with the estimate obtained by requiring the damage to spread through the 
lattice, without necessarily forming a connected network. Using the value 
dac t = dto t = 1.5 (6) for the fractal dimension of the actual or total damage 
and the relation dto t = 2 -  #Iv, we find /~ = 0.735 for the order parameter 
exponent. 

3. K A U F F M A N  M O D E L  WITH NOISE 

Inclusion of noise in cellular automata is important since noise plays 
the role of temperature in equilibrium systems. Thus, a phase transition is 
expected as the noise level changes for a system with a dimension higher 
than one. For the deterministic Kauffman model we know that for 
p > pc~0.298, any initial damage will eventually spread throughout the 
whole system. The Kauffman model is said to be in the chaotic phase, 
contrary to the frozen phase, when p < Pc and any finite initial damage 
remains confined. Here we study the possibility of suppressing this chaotic 
behavior by introducing noise into the model. We first do this for the most 
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Fig. 1. Values of the threshold pc(L) for the Kauffman model without  noise obtained using 
max imum evolution time T =  10L, plotted versus L l/v, with •-1 =0.68.  
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chaotic case, p = 0.5. Noise is introduced into the model by modifying the 
dynamical rule (1) to 

t t t �9 
f i j ( f f  i, j 1, ' t cri, j +  ! ,  a i -  l , j ,  (~i+ l , j ,  P ) ,  

a~+ l = with probability (1 - g) (3) 

t with probability g O'~, 

with a noise parameter g ~< 1. For g = 0 we recover the deterministic model. 
With rule (3) we see that for g =  1, the initial finite damage will always 
remain the same. The question is whether there exists some value of g finite 
but less than 1 at which the system behavior changes from chaotic 
to frozen. We study the spreading of damage by comparing the time 
development of two initial spin configurations {a} and {p} on an L x L  
square lattice differing at one edge and subject to noise level g, with the 
parameter p fixed at 0.5. It should be emphasized here that both {a} and 
{p} are subject to the same sequence of noise, i.e., the same set of random 
numbers is used in (3) to determine the probability for both {a} and {p} 
at the same value of g. 

Kaneko and Akutsu ~1~ study the effect of noise on cellular automata 
using a different rule than (3): 

l t l t t �9 
f , : (~ , , j -  1, a, , j+ 1, a,_ 1,j, a i+  l,j, p),  

t+l ai.t = with probability (1 - g) (4) 

1 - f , j ,  with probability g 

Since both {a} and {p} are subject to the same noise sequence, it seems 
that the above rule would not affect the damage. This has in fact been 
confirmed by a simulation on a L - - 6 0  lattice with maximum evolution 
time T =  300. For all noise levels g ~ 1, the result remains chaotic for all 
P<~Pc. So it seems that for {a} and {p} subjected to the same sequence of 
noise, (3) is the only way to introduce noise. 

For  a fixed size L we now let {a} and {p} evolve up to some time T 
under some noise level g and check if there is a spanning cluster in G". 
With everything fixed we now generate different configurations of {a} and 
{p} and again check for spanning clusters in G". All these configurations 
are allowed to evolve up to the same time T and the fraction having 
spanning clusters is recorded. The critical value go(L, T) is determined as 
the value of the parameter g at which the fraction of configurations with 
spanning clusters is 1/2 and this obviously depends on the lattice size L and 
the maximum allowed evolution time T. Contrary to the case of the 
Kauffman model without noise, we do not find here a maximum time 
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Table II. Values of the Threshold Noise Level gc(L, T) fo r  the  Kauffman 
Mode l  w i t h  Noise Obta ined Using M a x i m u m  Evo lu t ion  T ime T, at  p---0.5 

T L = 60 L = 100 L = 150 L = 200 L = 

5L 0.845 0.8425 0.833 0.8355 
10L 0.920 0.9195 0.9184 0.9180 
20L 0.965 0.9645 0.9590 0.9555 
40L 0.980 0.9795 0.9793 0.9795 
80L 0.990 0.9899 0.9897 0.9855 

160L 0.995 0.9947 0.99468 0.9925 
ov 0.99995 0.99945 0.99909 0.9959 0.992 

T,n(L) above which g~(L, T) becomes independent of time T, even though 
we have gone up to T =  160L (i.e., for a 200 x 200 lattice, we have gone up 
to 32,000 time steps for every site in the lattice). We give in Table II the 
value of gc(L, T) for L = 60, 100, 150, and 200. 

Then for each L we extrapolate the gc(L, T) values to the T =  ~ limit 
by a least square fit using the function 

go(L, T)=g,.(L, oo)+ bT -r (5) 

We find in all cases ~b,~ 1.01. The extrapolated values gc(L, oo) are also 
shown in Table II. We now extrapolate the g~(L, ~ )  values to the L = c~ 
limit by least square fitting them to the form 

gc(L, ~ ) = g c ( ~ ,  ~ ) + c L  ~o (6) 

with r  1/vg. We find go(o o, ~ ) ~ 0 . 9 9 2  and the correlation length 
exponent Vg to be vg 1 =0.41. We see then that one needs an extremely 
large noise level in order to force the Kauffman model at p = 0.5 from the 
chaotic phase into the frozen phase, even for an infinitely large system. 
Since our value for gc(~ ,  oo) for p = 0 . 5  is so close to unity, we repeat a 
simulation at p = 0.35 and L = 60 to check if gc is smaller for the smaller 
value of p. The value of go(60, T) is shown in Table III. These values 

Table III. Values of the Threshold Noise Level gc(60, T) for the  
Kauffman Mode l  w i t h  Noise Obta ined Using M a x i m u m  Evo lu t ion  

T ime T, at  p = 0 . 3 5 ,  fo r  a 6 0 x 6 0  Lat t ice 

T 300 600 1200 2400 4800 9600 
go(60, T) 0.77 0.88 0.94 0.97 0.984 0.992 
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extrapolated to T =  ~ give gc(60, ~ )  extremely close to unity. It seems 
most  likely that  the result at p = 0.35 is very similar to that at p = 0.5. We 
therefore conclude that  for p ~> Pc an extremely large noise level would be 
required to suppress the chaotic  behavior,  if this is possible at all, even in 
the limit of an infinitely large system. 

Our  results has been obtained for the square lattice. It should be 
interesting to study other  types of lattice and also higher dimensionalities. 
In view of the result obtained here, it is reasonable to believe gc = 1 for two 
dimensions. This is then reminiscent of the si tuation of  the O(n)  spin model  
in two dimensions. 
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